CARBENES AND CARBENOIDS -- CROWN ETHER AND CARBENIC SELECTIVITY EXPERIMENTS WITH PHENYLFLUORO-CARBENE AND CHLOROMETHYLTHIOCARBENE

Robert A. Moss^{*1a}, Martin A. Joyce^{1b}, and Frank G. Pilkiewicz Wright and Rieman Laboratories, School of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903

(Received in USA 19 May 1975; received in UK for publication 5 June 1975)

Phenylchlorocarbene and phenylbromocarbene could be generated as <u>free carbenes</u> by the action of KO-<u>t</u>-Bu on α, α -dihalotoluenes, if the macrocyclic polyether, 18-crown-6, was used to encapsulate the potassium ion, solubilize the base, and bar them from complexation with the carbenes (carbenoid formation).² Importantly, this work implied that "it should be possible to determine whether (other) base-induced α -eliminations afford carbenes or carbenoids by measuring the olefin selectivity in the presence and absence of crown ether...," and that "KOR-18-crown-6 α -eliminations should make <u>free carbenes</u> available when diazoalkane or diazirine precursors are not readily obtainable." ² We report here on the successful implementation of these ideas, and on important consequences for the study of carbenic selectivity.³

Phenylfluorocarbene and chloromethylthiocarbene were generated from a-bromo-a-fluorotoluene and a,a-dichlorodimethylsulfide, respectively, by the action of potassium <u>t</u>-butoxide, with or without an added equivalent of 18-crown-6. These species were added to tetramethylethylene, trimethylethylene, isobutene, <u>cis</u>-butene, and <u>trans</u>-butene. Except for the adduct of CH₃SCCl and <u>cis</u>-butene, ⁷ full characterizations of the cyclopropane products have been published.

Carbenic selectivities were established at 25° using the olefin competition method, in which the binary cyclopropane product mixtures resulting from pairs of competing olefins were analyzed by gc⁹ (calibrated TC detector). Relative reactivities of the olefins were calculated in the standard manner. Average deviations from the means of duplicate experiments were $\langle 4\%$, and satisfactory cross-checks⁶ were obtained. Final relative reactivities, normalized to $\underline{k}_{isobutene} = 1.00$, appear in Table I, along with analogous data for related carbenic species. Also included are values of $\underline{m}_{CXY}^{obsd}$ the least-squares slope of log ($\underline{k}_i / \underline{k}_{isobutene}$) for CXY \underline{vs} .

2425

log $(\underline{k}_1/\underline{k}_{1:sobutene})$ for CCl₂, at 25°. We have shown that $\underline{m}_{CXY}^{obsd}$ of (free) CH₃CCl, C₆H₆CBr, C₆H₆CCl, CCl₂, CFCl, and CF₂ are correlated by eq. (1).³ \underline{m}_{CXY} is a measure of carbenic selective.

$$\underline{\mathbf{m}}_{\mathbf{CXY}} = -0.9 \mu_{\mathbf{X},\mathbf{Y}} \frac{\sigma^{+}}{\mathbf{R}} + 0.69 \Sigma \frac{\sigma}{\mathbf{X},\mathbf{Y}} - 0.27 \qquad (1)$$

ity, relative to the selectivity of CCl_2 (m = 1.0).³

Alkene	C ₆ H ₅ CBr		C ₆ H ₅ CCl		C ₆ H ₅ CF		CH3 SCC1	
	carbenoid ^a	carbeneb	carbenoid	d	carbenoid ^e	$\operatorname{carbene}^{\mathrm{f}}$	no crown ^g	crown ^h
Me ₂ C=CMe ₂	1.6	4.4	2.6	5.1	2.7	5.8 ₅	7.4s	7.6
$Me_2C=CHMe^1$	1.3	2.5	1.6	3.2	1.2	3.0	1.9	2.1
$Me_2C=CH_2$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
<u>c</u> -MeCH=CHMe ^{i,3}	j 0.29	0.53	0.31	0.37	0.12	0.28	0.29	0.25
\underline{t} -MeCH=CHMe j	0.15	0.25	0.11	0.20	0.10	0.20 ₅	0.21	0.19
obsd ^m CXY	0.59	0.70	0.75	0.83	0.87	0.89	0.88	0.93

Table I. Relative Reactivities of Alkenes Toward Carbenic Species at 25°

^a ($C_6H_5CHBr_2 + KO-t-Bu$), ref. 10. ^b ($C_6H_5CBrN_2 + h\nu$), ref. 11. ^c ($C_6H_5CHCl_2 + KO-t-Bu$), ref. 12. ^d ($C_6H_5CCIN_2 + h\nu$), ref. 12. ^e ($C_6H_5CHBrF + KO-t-Bu$), ref. 4. ^f Same as <u>e</u>, with <u>18-crown-6</u>; this work. ^g ($CH_3SCHCl_2 + KO-t-Bu$); this work. ^h Same as <u>g</u>, with <u>18-crown-6</u>; this work. ⁱ Relative reactivities are composites of <u>syn</u>-halo and <u>anti</u>-halo modes of carbene addition. ^j Additions are stereospecific with regard to alkene geometry.

The following observations and interpretations derive from Table I. (1) Relative reactivities for CH₃SCCl additions are essentially identical, whether 18-crown-6 is or is not present during its generation. The "crown ether test"² thus establishes CH₃SCCl to be a free carbene when generated by butoxide-induced α -elimination.¹³⁸ (2) C₆H₅CF is not free when so generated. However, the free carbene can be obtained by the crown ether method,^{13b} a valuable result because a diazo precursor is unavailable. (3) C₆H₆CX carbenoids exhibit <u>lower selectivities</u> than the corresponding carbenes. We attribute this to the presence of K⁺Hal⁻ in the carbenoid addition transition states, resulting in greater charge dispersal (<u>vis-à-vis</u> the analogous carbene addition transition states). This leads to less positive charge localization on the alkenic carbons, and to a "damped" discrimination between alkenes.⁶ (4) More speculatively, selectivity differences between these carbenoids and carbenes apparently narrow as the carbenoic species become more selective; similar selectivities are seen for the C_6H_6CF species,¹⁴,¹⁵ and, with CH_3SCC1 , only one species is kinetically detected.¹⁴,¹⁶

If selectivity (at least partly) reflects "internal stabilization"¹⁷ of a carbene, then observation (4) suggests that carbenes as or more selective than $CH_3SCC1 (m_{CXY} > 0.91)^{18}$ may be sufficiently stabilized by their substituents to be free even when generated in the presence of K⁺Hal⁻ or K⁺OR⁻. $CCl_2 (\underline{m} = 1.0)$, for example, appears to be free when generated in the presence of KOR,¹⁹ whereas $C_6H_5CX (\underline{m} < 0.9)$ are not (Table I). This tandem application of crown ether complexation and \underline{m}_{CXY} analysis to problems of carbenic reactivity simplifies and orders heretofore confusing and unrelated data. It is also powerfully suggestive of new experiments which are in progress.

<u>Acknowledgments.</u> We are grateful to the National Science Foundation, The Public Health Service (National Cancer Institute Grant, CA-14912), and the Busch Memorial Fund of Rutgers University for financial support.

REFERENCES AND NOTES

- (1) (a) Fellow of the Alfred P. Sloan Foundation. (b) Busch Predoctoral Fellow.
- (2) R. A. Moss and F. G. Pilkiewicz, J. Am. Chem. Soc., <u>96</u>, 5632 (1974).
- (3) R. A. Moss and C. B. Mallon, ibid., 97, 344 (1975).
- (4) R. A. Moss and J. R. Przybyla, <u>Tetrahedron</u>, 25, 647 (1969).
- (5) R. A. Moss and F. G. Pilkiewicz, Synthesis, 209 (1973).
- (6) C. J. Pedersen, <u>J. Am. Chem. Soc.</u>, <u>89</u>, 7017 (1967); <u>92</u>, 386, 391 (1970); R. N. Greene, <u>Tetra-hedron Lett.</u>, 1793 (1972); C. L. Liotta, H. P. Harris, F. Cook, D. J. Cram, and G. Gokel, <u>J. Org. Chem.</u>, <u>39</u>, 2445 (1974).
- (7) Satisfactory characterization by spectral and analytical methods has been completed, and will appear in a full paper.
- (8) For discussions, see R. A. Moss in "Carbenes," Vol. 1, M. Jones, Jr., and R. A. Moss, Ed., Wiley-Interscience, New York, N.Y., 1973, pp. 153 ff.
- (9) For ease of analysis, the chloromethylthiocyclopropanes were <u>quantitatively</u> oxidized (with <u>m-chloroperbenzoic acid</u>) to the corresponding sulfones⁷ prior to gc.
- (10) R. A. Moss and R. Gerstl, <u>Tetrahedron</u>, 22, 2637 (1966).
- (11) R. A. Moss, <u>Tetrahedron Lett.</u>, 4905 (1967).
- (12) R. A. Moss, J. R. Whittle, and P. Freidenreich, J. Org. Chem., 34, 2220 (1969).

2428

- (13)(a) This conclusion refers to the cyclopropanating species. A similar application of the crown ether test to dimethylmethylene carbene has been reported by P. J. Stang and M. G. Mangum, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 1459 (1975); note 20. (b) Based upon our demonstration² of equivalence between photogenerated and KOR-18-crown-6 generated C₆H₅CBr (and C₆H₅CCl).
- (14) We take \pm 0.03 to be experimental error in $\underline{m}_{CXY}^{obsd}$.
- (15) $\underline{\mathbf{m}^{calc}}_{C_6H_6CF}$ [from eq. (1)] is 0.96, which differs from $\underline{\mathbf{m}^{obsd}}_{C_6H_6CF}$ by ~0.07. This is reasonable agreement, given that the average deviation of the differences between $\underline{\mathbf{m}^{calc}}_{CXY}$ and $\underline{\mathbf{m}^{obsd}}_{CXY}$ is ± 0.05 ,³ and that $\underline{\mathbf{m}^{obsd}}_{C_6H_5CF}$ was not included in the regression analysis which defined the parameters of eq. (1).³
- (16) m^{calc}_{CH₃SCC1} cannot be obtained from eq. (1) because o⁺_R(CH₃S) is a reaction-dependent variable:
 S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, <u>Prog. Phys. Org. Chem.</u>, <u>10</u>, 1 (1973), <u>cf.</u>,
 pp. 40-41. Taking m^{obsd}_{CH₃SCC1} ~0.91 (Table I), one can calculate from eq. (1) that o⁺_R(CH₃S) ~
 -0.39 in the addition of CH₃SCC1 to alkenes. The significance of this "high" value will be discussed in our full paper.
- (17) W. von E. Doering and W. A. Henderson, Jr., <u>J. Am. Chem. Soc</u>., <u>80</u>, 5274 (1958).
- (18) This value is offered as a rule of thumb. Given the imprecision in \underline{m} , ¹⁴, ¹⁵ the "critical zone" for the carbenoid-carbene transition might be taken as ~0.85 $\leq m \leq 0.95$.
- (19) Reference 8, pp. 287-288, and citations therein.